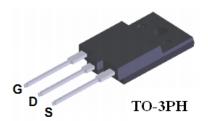


1500V N-Channel MOSFET


General Description

This Power MOSFET is produced using advanced self-aligned planar technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

These devices can be used in various power switching circuit for system miniaturization and higher efficiency.

3A, 1500V, RDs(on)typ. = $5\Omega@VGS$ = 10 V Id=1.5A Low gate charge (typical 37nC) Low reverse transfer capacitance (typical2.8pf) Fast switching 100% avalanche tested

Inner Equivalent Principium Chart

Absolute Maximum Ratings Tc = 25 ℃ unless otherwise noted

Symbol	Parameter			JFQM3N150C	Units
V _{DSS}	Drain – Source Volta	ge		1500	V
1-	Drain Current	Continuous (Tc = 25 °C)		3	А
Iσ	Drain Current	Continuous (Tc = 100 °C)		1.8	А
Івм	Drain Current - Pul	sed	(Note 1)	12	А
V _{GSS}	Gate – Source Voltag	e		±30	V
EAS	Single Pulsed Avalan	che Energy	(Note 2)	225	mJ
dv/dt	Peak Diode Recovery	dv/dt	(Note 3)	5	V/ns
PD	Power Dissipation (T	c = 25 °C)		32	W
Тл,Тѕтб	Operating and Storage Temperature Range			-55 to +150	°C
-	Maximum lead temperature for soldering purposes			200	00
T∟	1/8" frome case for 5 seconds			300	°C
Visol	Isolation test voltage	(RMS,f = 50 Hz,	t = 500ms)	2.5	KV

^{*}Drain current limited by maximum junction temperature.

Thermal characteristics

Symbol	Parameter	JFQM3N150C	Units
Rөлс	Thermal Resistance, Junction-to-Case	3.8	°C/W
Rеја	Thermal Resistance, Junction-to-Ambient	40	°C/W

JFQM3N150C

Electrical Characteristics Tc = 25 °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Charact	Off Characteristics					
BVDSS	Drain – Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 uA	1500			V
⊿ BVoss/	Breakdown Voltage Temperature	I _D = 250 uA, Referenced to		4.5		\./\°C
∠Tı	Coefficient	25℃		1.5		V/°C
l	Zara Cata Valtaga Drain Current	V _{DS} = 1500 V, V _{GS} = 0 V			25	uA
loss	Zero Gate Voltage Drain Current	V_{DS} = 1200 V, Tc = 125 $^{\circ}$ C	-	-	500	uA
IGSSF	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{GS} = 0 V	-	-	100	nA
Igssr	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{GS} = 0 V	-	-	-100	nA
On Characte	eristics					
V _{GS(th)}	Gate Threshold Voltage (Note 4)	V _{DS} = V _{GS} , I _D = 250 uA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source on-Resistance (Note 4)	V _{GS} = 10 V, I _D = 1.5A		5	8	Ω
g FS	Forward Transconductance (Note 4)	V _{DS} = 30 V, I _D = 1.5 A		4.5		S
Dynamic Ch	aracteristics					
Ciss	Input Capacitance	y 25 y y 6 y		1938		pF
Coss	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		104		pF
Crss	Reverse Transfer Capacitance	1.0 MH2		2.8		pF
Rg	Gate resistance	F= 1.0 MHz		4.0		Ω
Switching C	haracteristics					
t _{d(on)}	Turn-On Delay Time			35		ns
tr	Turn-On Rise Time	V _{DS} = 750 V, I _D = 3.0 A , R _G =		19		ns
td(off)	Turn-Off Delay Time	10Ω , V _{GS} = 10 V (Note 4,5)		56		ns
tf	Turn-Off Fall Time			30		ns
Qg	Total Gate Charge	7507/1 2047/		37		nC
Qgs	Gate-Source Charge	V _{DS} = 750 V, I _D = 3.0 A V _{GS} =		10		nC
Qgd	Gate-Drain Charge	10 V (Note 4,5)		14		nC
Drain – Sou	rce Diode Characteristics and Maximum Ratin	gs				
ls	Maximum Continuous Drain-Source Diode Forward Current				3	Α
Ism	Maximum Pulsed Drain-Source Diode Forward Current				12	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 3.0 A			1.5	V
trr	Reverse Recovery Time	V _{GS} = 0 V, I _S = 3.0 A		880		ns
Qrr	Reverse Recovery Charge	dl _F /dt = 100 A/us (Note 4)		6.5		uC

Notes:

- 1. Repetitive Rating : Pulsed width limited by maximum junction temperature
- 2. L = 10.0mH , Ias = 6.7A, Rg = 25 Ω , Starting T $_{J}$ = 25 $^{\circ}\mathrm{C}$
- 3. IsD \leq 3.0A, di/dt \leq 100A/us, VDD \leq BVDSS, Starting TJ = 25°C
- 4. Pulsed Test: Pulsed width ≤300us, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

Characteristics Curve

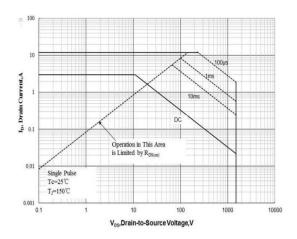


Figure 1 Maximum Forward Bias Safe Operating Area

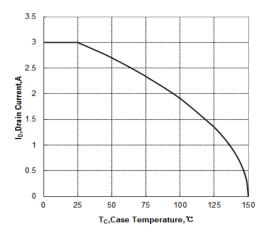


Figure 3 Maximum Continuous Drain Current vs Case Temperature

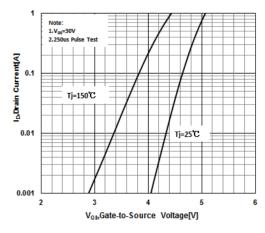


Figure 5 Typical Transfer Characteristics

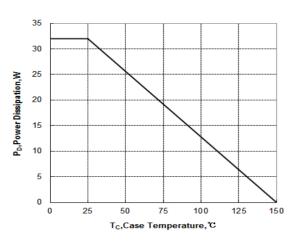


Figure 2 Maximum Power dissipation vs Case Temperature

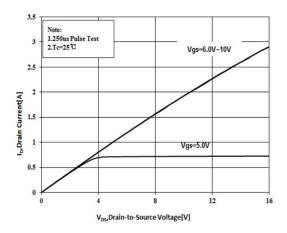


Figure 4 Typical Output Characteristics

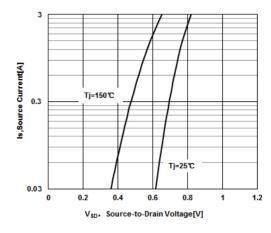


Figure 6 Typical Body Diode Transfer Characteristics

Characteristics Curve

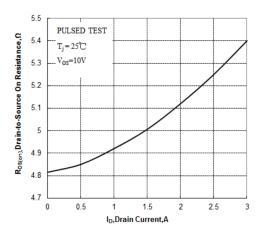


Figure 7 Typical Drain to Source ON Resistance vs Drain Current

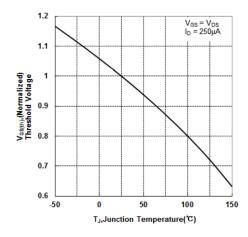


Figure 9 Typical Theshold Voltage vs Junction Temperature

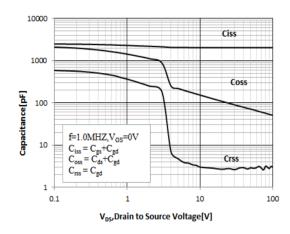


Figure 11 Typical Capacitance vs Drain to Source Voltage

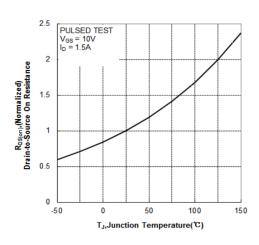


Figure 8 Typical Drian to Source on Resistance vs Junction Temperature

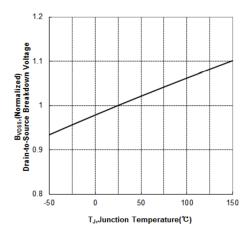


Figure 10 Typical Breakdown Voltage vs Junction Temperature

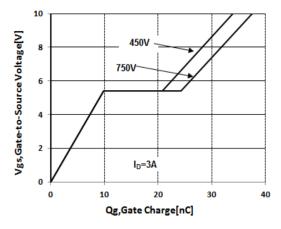
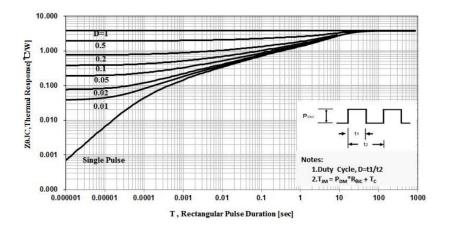
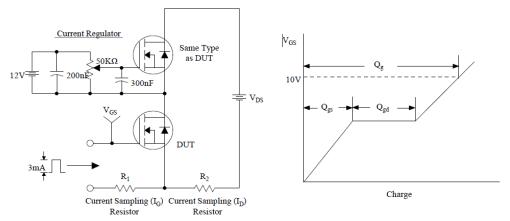
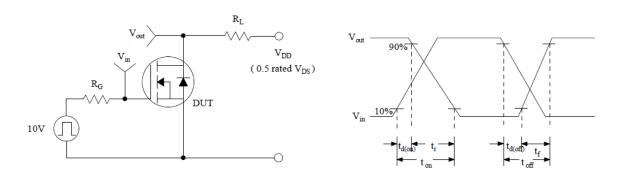
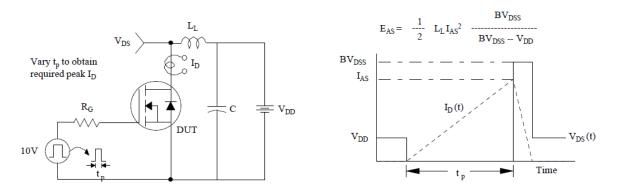


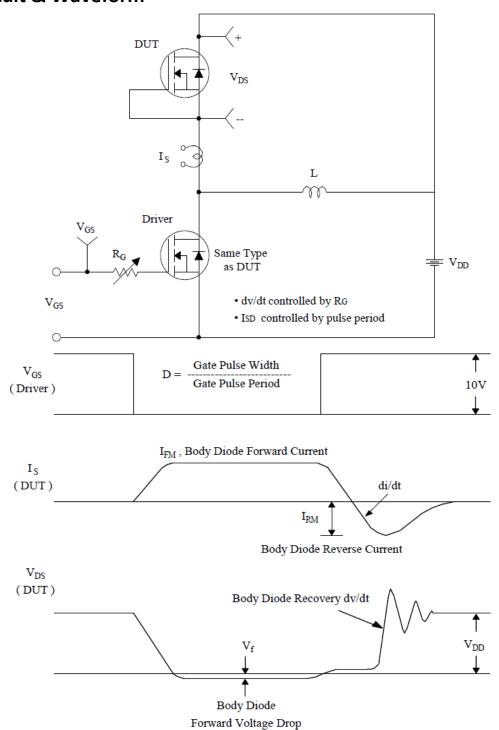
Figure 12 Typical Gate Charge vs Gate to Source Voltage

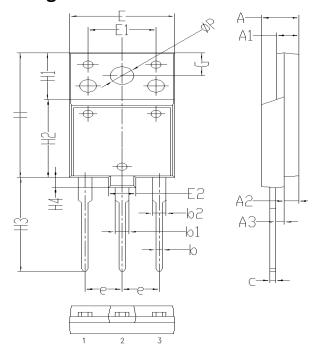

Figure 13 Maximum Effective Thermal Impedance , Junction to Case


Test Circuit & Waveform

Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms


Test Circuit & Waveform

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Package Information

Symbol	单位 mm				
1 *	Min	Nom	Max		
A	5.35	5.55	5.75		
A1	2.80	3.00	3.20		
A2	1.90	2.10	2.30		
A3	1.10	1.30	1.50		
A3 b	0.65	0.75	0.85		
b1	1.80	2.00	2.20		
b2	1.80	2.00	2.20		
С	0.70	0.90	1.10		
c e E	5.25	5.45	5.65		
E	15.3	15.5	15.7		
E1	9.80	10.0	10.2		
E2	3.80	4.00	4.20		
Н	24.3	24.5	24.7		
H1	9.00	9.20	9.40		
H2	15.1	15.3	15.5		
Н3	18.5	19.0	19.5		
H4	1.80	2.00	2.20		
H5	4.80	5.00	5.20		
G	4.3	4.5	4.7		
ФР	3.40	3.60	3.80		

Disclaimers

JIAEN Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to JIAEN's terms and conditions supplied at the time of order acknowledgement.

JIAEN Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent JIAEN deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

JIAEN Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using JIAEN's components. To minimize risk, customers must provide adequate design and operating safeguards.

JIAEN Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in JIAEN's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of JIAEN's products with statements different from or beyond the parameters stated by JIAEN Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated JIAEN's product or service and is unfair and deceptive business practice. JIAEN Semiconductor Co., Ltd is not responsible or liable for any such statements.